

Excel Macros
Demystified

Utilizing Excel macros can help you automate many repetitive activities. Unfortunately, many Excel
users labor under the assumption that creating and working with macros is necessarily a difficult and
tedious task that involves learning a programming language. In fact, most Excel users can take
develop and use their own macros by simply adding a few keystrokes to processes in which they are
already engaging. In this chapter, you will learn how to take advantage of macros.

E X C E L M A C R O S D E M Y S T I F I E D

2

Creating your First Macro in Less than Two
Minutes

Case Study in Recording Macros
Sean, a CPA working for a mid-sized public accounting firm, finds himself performing the same
task each and every month for several of his small business clients – exporting financial
statements from the clients’ accounting software applications to Excel, reformatting the
statements to meet the firm’s standards, and printing the statements. While the task is not
difficult, it is monotonous in that it involves making the same formatting modifications every
month. Sean feels that most of these modifications are clerical in nature but is reluctant to hand
the job over to his support staff. Adding insult to injury, he notices that the firm’s partners – the
ones requiring him to reformat the statements – evidently do not place great value on this effort
as they do not bill his clients for the full value of the time he spends on reformatting and printing
the financial statements. Sean believes there must be a better, more efficient approach to
performing these repetitive tasks.
Sean has heard of macros in Excel and other applications. Though Sean does not yet have a
deep knowledge of macros, he understands that they are ideal tools to execute repetitive
keystrokes and decides to attempt to write an Excel macro to solve his financial statement
formatting problem. However, he realizes he has no knowledge of the programming language
Excel uses for macros – Visual Basic for Applications (VBA) – and, further, he does not have
the time necessary to learn this programming language. In lamenting his plight over lunch with
Jamie, another CPA working at the firm, he learns that he may be able to write the macro without
any knowledge of VBA whatsoever. Jamie tells him about a tool in Excel known as the Macro
Recorder and about how she used the macro recorder just a few weeks ago to write some very
useful and practical Excel macros she uses on a daily basis. Jamie tells Sean that the Macro
Recorder is very easy to use; all users have to do is turn it on, execute Excel keystrokes as they
normally would, and then turn the Macro Recorder off. Excel will convert all of the keystrokes
into VBA and store the code as a macro. Once stored, Sean can recall and play back the macro
on demand. Newly encouraged, Sean decides to go back to the office and attempt to write his
first macro using the tool Jamie has discussed with him.

To begin his quest, Sean starts the accounting application containing one of his client’s data –
in this case, QuickBooks. He opens one of the financial statements that he has to reformat each
month, the Profit & Loss YTD Comparison shown in Figure 1.

Figure 1 – Financial Statement for Export to Excel

With the financial statement open, Sean clicks the Export… button to export the financial
statement to Excel. Immediately upon doing so, and before Sean begins any of his modification
efforts, the financial statement appears in Excel as shown in Figure 2. Among the modifications
Sean would like to automate with his macro are:

• Changing the title of the report to “Statement of Income,”

• Deleting the current entries in cells J1 through J3,

• Formatting the numbers in the financial statement in the Accounting Format without

currency symbols, with the exception of the first and last rows which will have currency
symbols.

• Moving the current “% of Income” column so that it is between the current month

column and the year-to-date column,

• Adding a “% of Income” column to calculate percentages based on year-to-date
numbers,

• Changing the reference for “Income” to “Revenue” and for “Total Income” to “Total

Revenue,”

E X C E L M A C R O S D E M Y S T I F I E D

4

• Changing the reference for “Total COGS” to “Total Cost of Goods Sold,” and

• Centering the report’s three-line header across the width of the report.

Figure 2 - Exported Financial Statement in Excel

With the financial statement workbook open, Sean clicks the drop-down arrow under Macros
on the View tab of the Ribbon and chooses Record Macro… to start the Macro Recorder as
shown in Figure 3. If Sean had previously activated the Developer tab of the Ribbon, he could

start the Macro Recorder by clicking Record Macro on the Developer tab of the Ribbon. In
either case, the Record Macro dialog box appears as shown in Figure 4.

E X C E L M A C R O S D E M Y S T I F I E D

6

Figure 3 - Starting the Macro Recorder from the View Tab of the Ribbon

Figure 4 - The Record Macro Dialog Box

In the Record Macro dialog box, Sean is asked to enter four elements of information:
1. The name of the macro,
2. A shortcut key (optional),
3. Where the macro will be stored, and
4. A description of the macro (optional).

Because Sean doesn’t yet understand all of the ramifications of these choices, he makes his best
guess and enters the data in the Record Macro dialog box shown in Figure 5.

Figure 5 - Sample Entries in the Record Macro Dialog Box

Upon clicking OK, Sean notices a button appear in the lower, left-hand corner of the Excel
window; Sean remembers that Jamie told him to click this button – the Stop Recording button
– when he was through entering the keystrokes he wished the Macro Recorder to record for him
and translate into VBA. Figure 6 displays the Stop Recording button.

Figure 6 - The Stop Recording Button for the Macro Recorder

With the Macro Recorder turned on, Sean executes each of the keystrokes required to complete
his desired reformatting objectives listed beginning on page 15. When he has completed the
keystrokes, he clicks the Stop Recording button to turn the Macro Recorder off. His reformatted
financial statement appears as shown in Figure 7.

E X C E L M A C R O S D E M Y S T I F I E D

8

Figure 7 - Manually Reformatted Financial Statement in Excel

Sean saves the workbook but, instead of saving it as a traditional Excel workbook with a .xlsx
extension, he is prompted by Excel to save it as a macro-enabled workbook; a macro-enabled
workbook has a .xlsm file extension. To save the workbook in this format,

Sean clicks Save As and selects Excel Macro-Enabled Workbook in the Save as type drop-
down box as shown in Figure 81.

Figure 8 - Saving a Workbook as a Macro-Enabled Workbook

Sean is anxious to test his newly recorded macro to see if it will, indeed, reformat his client’s
financial statement and save him the time of performing this task manually each and every
month. To do so, Sean first exports the financial statement from his client’s accounting software
data file to Excel. Then, he clicks Macros on either the View tab or the Developer tab of the
Ribbon to open the Macro dialog box shown in Figure 9. On the Macro dialog box, Sean selects
his newly recorded Format macro and clicks Run. Upon doing so, his screen flickers and
flashes for a couple of seconds before returning a perfectly formatted financial statement. Sean
realizes that Jamie was right about the ease with which certain macros can be recorded and
begins to think of other macros he can record to automate repetitive tasks. It was a very good
day for Sean!

1 Alternatively, Sean may have chosen to save the macro in an Excel Macro-Enabled Template. Such a file has
a.xltm file extension. A potential advantage to working with a template file instead of a workbook file is that Sean
faces far less risk that he will accidentally overwrite the contents of the template file.

E X C E L M A C R O S D E M Y S T I F I E D

10

Figure 9–Running a Macro to Reformat Financial Statements

Macro Recorder Postscript
For those previously uninitiated in writing and using macros, Sean’s use of the Macro Recorder
seemingly presents a single solution to writing macros. That is, simply turn on the Macro
Recorder, enter the requisite keystrokes for the task at hand, then turn off the Macro Recorder
and, presto, instant macro. The Macro Recorder did all of the heavy lifting for Sean and
converted his keystrokes into the code you see below.

Sub Format()

' Format Macro

' Macro to automatically format the financial statements for Carl's Computer Shop

Range("A2").Select

ActiveCell.FormulaR1C1 = "Statement of Income"

Range("J1:J3").Select

Selection.ClearContents

Range("J5:J28").Select

Selection.Cut Destination:=Range("G5:G28")

Range("G5:G28").Select

Columns("G:G").EntireColumn.AutoFit

ActiveWindow.ScrollRow = 13

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 6

Range("G5").Select

Selection.Copy

Range("I5").Select

ActiveSheet.Paste

Columns("I:I").EntireColumn.AutoFit

Range("I8:I28").Select

Application.CutCopyMode = False

Selection.NumberFormat = "General"

E X C E L M A C R O S D E M Y S T I F I E D

12

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 6

Range("I8").Select

ActiveCell.FormulaR1C1 = "=+RC[-1]/R8C[-1]"

Range("I8").Select

Selection.Copy

Range("I8,I9,I11,I12,I13,I15,I16,I17,I18,I19,I20,I21,I22").Select

Range("I22").Activate

ActiveWindow.SmallScroll Down:=11

Range(_

"I8,I9,I11,I12,I13,I15,I16,I17,I18,I19,I20,I21,I22,I23,I24,I25,I26,I27,I28"). _

Select

Range("I28").Activate

ActiveSheet.Paste

ActiveWindow.ScrollRow = 16

ActiveWindow.ScrollRow = 15

ActiveWindow.ScrollRow = 14

ActiveWindow.ScrollRow = 13

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 6

Range("G8:G28").Select

Application.CutCopyMode = False

Selection.Copy

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 6

Range("I8").Select

Selection.PasteSpecial Paste:=xlPasteFormats, Operation:=xlNone, _

SkipBlanks:=False, Transpose:=False

Application.CutCopyMode = False

Range("G8:G28").Select

Selection.NumberFormat = "#,##0.0##%;-#,##0.0##%"

Selection.NumberFormat = "#,##0.0#%;-#,##0.0#%"

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 6

Selection.NumberFormat = "0.00%"

Range("I8:I28").Select

Selection.Style = "Percent"

Selection.Style = "Percent"

Selection.NumberFormat = "0.0%"

Selection.NumberFormat = "0.00%"

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 7

E X C E L M A C R O S D E M Y S T I F I E D

14

ActiveWindow.ScrollRow = 6

Range("D7").Select

ActiveCell.FormulaR1C1 = "Revenue"

Range("D9").Select

ActiveCell.FormulaR1C1 = "Total Revenue"

Range("D12").Select

ActiveCell.FormulaR1C1 = "Total Cost of Goods Sold"

Range("F8,H8").Select

Range("H8").Activate

ActiveWindow.ScrollRow = 7

ActiveWindow.ScrollRow = 8

ActiveWindow.ScrollRow = 9

ActiveWindow.ScrollRow = 10

ActiveWindow.ScrollRow = 11

ActiveWindow.ScrollRow = 12

ActiveWindow.ScrollRow = 13

Range("F8,H8,F28,H28").Select

Range("H28").Activate

Selection.Style = "Currency"

Range("H9:H27").Select

Range("H27").Activate

Selection.Style = "Comma"

Range("F9:F27").Select

Selection.Style = "Comma"

Range("A1:I3").Select

With Selection

.HorizontalAlignment = xlCenterAcrossSelection

.VerticalAlignment = xlBottom

.WrapText = False

.Orientation = 0

.AddIndent = False

.IndentLevel = 0

.ShrinkToFit = False

.ReadingOrder = xlContext

.MergeCells = False

End With

Range("A1").Select

End Sub

However, the Macro Recorder is not a single or perfect solution to all macro tasks as there are
several limitations surrounding the functionality of the Macro Recorder. For instance, the Macro
Recorder cannot be used to write a macro which pauses to allow a user to input data into a cell.
Likewise, the Macro Recorder cannot be used to write a macro in which DO/WHILE or
IF/THEN/ELSE logic is required. To overcome these limitations, writing and editing VBA
code is necessary. Nonetheless, the Macro Recorder is a great first step into the world of macros.
In fact, many seasoned VBA programmers use the Macro Recorder to create the “foundation”
code necessary for their macros and then edit that code to create more complex macros. These
types of techniques will be discussed beginning in Chapter Four.

Summary
As shown in this chapter, macros can be extremely valuable tools for accountants and other
business professionals to automate otherwise time-consuming, repetitive tasks. Though macros
are written in a programming language known as VBA, the Macro Recorder tool in Excel can
capture sequences of keystrokes and convert the keystrokes into a VBA-based macro. The
Macro Recorder is accessible from either the View tab of the Ribbon or the Developer tab of
the Ribbon. To use it, turn it on, execute the keystrokes otherwise required to perform the task
at hand, and turn it off. For security reasons discussed in detail later in this course, users must
save Excel workbooks containing macros as macro-enabled workbooks. Once a macro is
recorded, select Macros from either the View tab or the Developer tab of the Ribbon to play it
back, click the desired macro, and select Run.

As will be discussed in subsequent chapters, while the Macro Recorder is a great tool, it does
have some rather significant limitations; as such, those users requiring more advanced macro
functionality will likely require at least a working knowledge of programming with VBA.
Nonetheless, the Macro Recorder should not be overlooked as a serious tool when attempting
to automate repetitive tasks.

E X C E L M A C R O S D E M Y S T I F I E D

16

Understanding Macro Fundamentals

What is a Macro?
According to Microsoft, “a macro is a series of commands and functions that are stored in a
Microsoft Visual Basic module and can be run whenever you need to perform the task.”
Wikipedia expands on that definition by offering that “a macro is a rule or pattern that specifies
how a certain input sequence (often a series of characters) should be mapped to an output
sequence (also often a series of characters) according to a defined procedure.” At K2
Enterprises, we have defined a macro in the past as “a way to automate some routine task that
can be clearly defined.” The three cited definitions in the preceding paragraph have a common
theme – automating a task according to a procedure prescribed by a computer program. Thus,
we will settle on the following for our working definition of Excel macros.

A macro is a series of commands and instructions stored in a computer
program that allows users to automate tasks according to the rules and
parameters contained in that computer program.

Macros are certainly not new; in fact, they have been around in spreadsheets since the very early
days. For instance, Lotus 1-2-3 users created macros to automate print jobs and other repetitive
tasks. In fact, the Lotus 1-2-3 print macro shown in Figure 10 will likely ring familiar with
many. In sequence, the characters in the macro instructed Lotus 1-2-3 to Print, to the Printer,
after Aligning the paper, Go, Page eject, and Quit.

Figure 10 - Vintage Lotus 1-2-3 Macro Used for Printing

Although there were special macro programming languages in Lotus 1-2-3, most early Lotus 1-
2-3 macros were simply a series of keystrokes typed into a cell as a label. As evidenced above,
the scripting language used by Lotus 1-2-3 was somewhat simplistic, though quite powerful.

Early versions of Excel also had their own unique macro programming language. However,
beginning with Excel version 5, Microsoft did away with having a separate macro programming
language. For former Lotus 1-2-3 users who created macros to automate print jobs and other
repetitive tasks, having a set of “macro commands” that only worked in macros was the norm.
However, Microsoft decided that having a unique macro language was not a good, long term
strategy. It required a separate development team and a separate support team and was
permanently limited in its power and flexibility because of its limited application.

Instead of continuing with a unique macro programming language, Microsoft chose to use a
modified version of the very popular and very powerful visual basic programming language
alled Visual Basic for Applications (VBA) as the
macro language for Microsoft Office applications. An immediate advantage of this approach is
the vast number of resources (i.e., books, training manuals, experienced programmers, canned
code, etc.) that overnight became available to Office users. Note that VBA macros are not

limited to Excel but are available in many other Office applications, including Word,
Outlook, and PowerPoint; thus, once mastered, the power of macros is easily extended into other
applications used on a daily basis by accountants and other business professionals.

Accessing Macro Functionality
Macro functionality may be accessed in several places in Excel. For instance, basic macro
functionality such as viewing macros, recording macros, and turning relative referencing on and
off is accessible from the View tab of the Ribbon as shown in Figure 11.

Figure 11 - Accessing Macro Functionality from the View Tab of the Ribbon

However, to gain access to detailed and deep macro functionality, users must first activate the
Developer tab of the Ribbon. By default, Microsoft does not activate the Developer tab of the
Ribbon. The rationale for this decision is that the overwhelming majority of Excel users do not
want access to this functionality and, consequently, there is no need to add clutter and
complexity to the Ribbon by making the Developer tab visible. Fortunately, for those who do
want and need the functionality found on the Developer tab, it is easy to activate. To customize
the Ribbon in Excel 2010 and Excel 2013, right-click on the Ribbon and choose Customize
Ribbon to open the window shown in Figure 12. Alternatively, you can choose File, Options,
and Customize Ribbon to open the window. On the right-hand side of the window, check the
box next to Developer and click OK to enable this functionality.

E X C E L M A C R O S D E M Y S T I F I E D

18

Figure 12 - Activating the Developer Tab of the Ribbon in Excel 2013

Users of Excel 2007 enable the Developer tab by clicking the Office Button and Excel Options.
Then, on the Popular tab, check the box next to Show Developer tab in the Ribbon and OK
as shown in Figure 13.

Figure 13 - Activating the Developer Tab of the Ribbon in Excel 2007

Once a user activates the Developer tab, virtually all of Excel’s macro functionality is available
from that tab of the Ribbon as shown in Figure 14.

Figure 14 - Developer Tab of the Ribbon

On the Developer tab, three groups are of particular significance when working with macros.

1. Code – The Code group contains icons used to access five functions related to recording

and playing back macros.
a. Visual Basic icon, providing access to the Visual Basic Editor
b. Macros icon, providing access to the Macro dialog box
c. Record Macro icon, which turns on the Macro Recorder
d. Use Relative References icon, which turns relative references on and off
e. Macro Security icon, providing access to the Trust Center.

E X C E L M A C R O S D E M Y S T I F I E D

20

2. Add-Ins – The Add-Ins group contains two icons used to manage Excel add-ins.

a. Add-Ins icon, providing access to activating and de-activating Excel add-ins
b. COM Add-Ins icon, used to manage Common Object Model add-ins

3. Controls – The Controls group contains icons used to access five functions related to

work with programming controls on a worksheet.
a. Insert icon, providing access to an assortment of programming controls
b. Design Mode icon, providing access to design tools related to an ActiveX

control
c. Properties icon, providing access to a control’s properties
d. View Code icon, providing access to VBA code inside the Visual Basic Editor
e. Run Dialog icon, providing access to a custom dialog box or user form designed

in VBA.

Naming Macros
In the first chapter, Sean entered a simple name – Format – for his macro. When assigning a
name to a macro, there are a few simple rules that users must follow.

• The first character of the name must be a letter.
• Numbers and special characters such as underscores are allowed in a macro name, but

they cannot begin the macro name.
• Spaces are not allowed in macro names; a common workaround for this limitation is to

use an underscore character in lieu of spaces.
• A macro cannot have the same name as a cell reference or another named object in the

workbook.

If a user attempts to assign a name to a macro that is the same as a cell reference or any other
named object in the workbook or that violates any of the other naming rules, Excel will display
the error message shown in Figure 15.

Figure 15 - Macro Naming Error in Excel

Based on the naming rules outlined above, any of the following would have been among the
valid names for Sean’s macro.

• FormatReport
• Format_Report
• Format1

Likewise, each of the following would have been disallowed for Sean’s macro.

• 1Macro
• Format Report
• A1

Shortcut Keys
When creating a macro, users can assign a shortcut key to it so that all users have quick and
easy access to playing back the macro. By doing so, users will be able to execute the macro with
a combination of a CTRL+keystroke or a CTRL+SHIFT+keystroke combination instead of
accessing the Macro dialog box for playback.

In the example in the first chapter, Sean elected not to assign a keyboard shortcut. He could
have, for example, entered an “R” in the shortcut key field. Had he done so, then the keyboard
shortcut of CTRL + R could have been used to execute the macro.

With respect to shortcut keys, it must be noted that users should exercise extreme caution when
assigning shortcut keys. For example, had Sean used CTRL + F as his keyboard shortcut, he
would have overridden the preexisting Excel keyboard shortcut to the Find & Replace function.
Unfortunately, Excel provides no advance warning that the newly assigned keyboard shortcut
is about to replace the existing keyboard shortcut. As such, a best practice is to test the desired
keyboard shortcut prior to assigning it to a macro. If the desired keyboard shortcut is already in
use by Excel, consider adding the SHIFT key to the macro shortcut.

Storing and Deleting Macros
When creating a macro, the developer may choose to store the macro in one of three locations:

1. The current workbook,
2. The Personal Macro Workbook, or
3. Another workbook.

The proper decision here is critical to being able to access and run the macro when it is needed.

If a macro is stored in the current workbook, it will only be available when the current workbook
is open. This is often the correct choice when the macro is specific to a particular report or
project and only needs to be available when a user is working on that specific report or project.

Likewise, saving a macro in another workbook makes the macro available only when the other
workbook is open. Thus, users must know to open the other workbook in which the macro is
saved before attempting to run the macro.

E X C E L M A C R O S D E M Y S T I F I E D

22

Saving the macro in the Personal Macro Workbook makes the macro available whenever Excel
is open. Each user has a separate Personal Macro Workbook entitled personal.xlsb. By default,
the Personal Macro Workbook is hidden; most users will never need to and likely should not
unhide it. Saving a macro in the Personal Macro Workbook is typically the proper choice when
the macro is one that is often used for formatting or other general purpose utility functions.

Deleting a macro that was stored in other than Personal Macro Workbook is a straightforward
process. From the Macro dialog box, simply choose the macro to delete and click the Delete
button as shown in Figure 16.

Figure 16 - Deleting a Macro

In addition to deleting macros by selecting them in the Macro dialog box and clicking Delete,
users can also delete them from within the Visual Basic Editor. Working with the Visual Basic
Editor is discussed beginning in Chapter 4.

Deleting Macros from the Personal Macro Workbook
Notwithstanding the previous recommendation to keep the Personal Macro Workbook hidden,
there is one particular instance when many users may need to unhide it and act upon it. If a
macro is stored in the Personal Macro Workbook, and a user wishes to delete that macro, it
would be natural to assume that selecting the macro in the Macro dialog box and choosing
Delete would delete the macro. However, doing so generates the error message shown in Figure
17.

Figure 17 - Attempting to Delete a Macro from the Personal Macro Workbook

The solution to this problem is to unhide the Personal Macro Workbook, make it the active
workbook, and then delete the macro. To do this, begin on the View tab of the Ribbon by
clicking Unhide. In the Unhide dialog box shown in Figure 18, select the Personal Macro
Workbook and click OK to unhide the workbook.

Figure 18 - Unhiding the Personal Macro Workbook

With the Personal Macro Workbook unhidden and active, return to the Macro dialog box, select
the macro to delete, and click OK. This time Excel will delete the macro. Once the macro is
deleted, hide the Personal Macro Workbook by selecting Hide from the View tab of the Ribbon.

E X C E L M A C R O S D E M Y S T I F I E D

24

Of course, as is often the case in Excel, there is another practical solution to this problem, and
that is to delete the macro from within the Visual Basic Editor, as mentioned previously.

Absolute vs. Relative Cell References in Macros
One of the most challenging issues facing those new to macros is understanding how a given
macro operates based on whether it is built using absolute or relative cell references. By default,
Excel records macros using absolute referencing; this means that as the macro is being
recorded, Excel records and acts upon the exact location of the cellpointer. In other words, if the
cellpointer is in cell A1 when recording the macro begins, and the person recording the macro
then clicks in cell C3 – two rows down and two rows over from cell A1 – Excel will perform
whatever action is being recorded on cell C3. On the other hand, if relative referencing is
enabled, Excel will move the cellpointer down two rows and over two columns, regardless of
the starting location. Thus, following the previous example, if the starting location is cell D5,
Excel will reposition the cellpointer while the macro is being played back to cell F7.

Again, by default, all macros are recorded with absolute referencing, and this is the desired
functionality in many cases. However, there are also many cases where relative referencing is
necessary. To enable relative referencing, click the Use Relative References from either the
View tab of the Ribbon or the Developer tab of the Ribbon as shown in Figure 19.

Figure 19 - Selecting Relative Referencing

Without becoming bogged down in the details of the VBA code, Figure 20 displays the
differences between the effect of using relative references and absolute references. In the relative
reference example at the top half of the figure, the phrase “This is an example of relative
referencing.” will be entered four rows down and three columns to the right of the active cell.
In the example at the bottom half of the window, the phrase “This is an example of absolute
referencing.” will always be entered in cell C5.

Figure 20 - Difference between VBA Code when Using Relative and Absolute Referencing

Macro Security
Why Managing Macro Security is Necessary
Before considering the different options for managing macro security, it is first necessary to
understand why this topic is so important. Put simply, left unsecured, macros carry the risk of
introducing malicious code into a user’s computer. Keeping in mind that macros are nothing
more than computer programs, it is possible for someone to either purposefully or accidentally
include malicious and damaging code in a macro. If that macro is then passed along to other
users who execute it on their computers, then the malicious code spreads and potentially harms
the other computers or compromises data on them. With this bit of background, it becomes
obvious that managing the security risk associated with macros is necessary in order to be able
to utilize macros to their fullest extent. Otherwise, accountants and other business professionals
run the unacceptable risk of compromising sensitive personal, client/customer, or corporate
data.

Default Macro Security Settings
Macro security begins with the type of Excel files into which users can save macros. A
traditional Excel workbook with a.xlsx file extension cannot contain macros. In fact, the only
three types of workbooks that can contain macros are macro-enabled workbooks with .xlsm file
extensions, macro-enabled templates with .xltm file extensions, and binary workbooks with
.xlsb extensions; the Personal Macro Workbook described previously is an example of a binary

E X C E L M A C R O S D E M Y S T I F I E D

26

workbook2. The purpose of these restrictions is to reduce the likelihood that a user unknowingly
or unwittingly opens an Excel workbook that contains potentially malicious macro code.

A second layer of macro security is provided by using trusted locations. By default, Excel
disables macros in all workbooks that are not stored in a trusted location. According to
Microsoft,

A trusted location is typically a folder on your hard disk or a network share.
Any file that you put in a trusted location can be opened without being checked
by the Trust Center security feature.

The Trust Center mentioned in the definition of trusted locations provides “one-stop shopping”
for most of Excel’s critical security functions. To access the Trust Center in Excel 2010 and
Excel 2013, select File, Options, Trust Center, and Trust Center Settings. In Excel 2007,
click the Office Button, Excel Options, Trust Center, and Trust Center Settings to access
the Trust Center.

If a workbook containing a macro which is not stored in a trusted location is opened, Excel, in
default, supplies the warning message shown in Figure 21.

Figure 21 - Macro Security Warning Message

By clicking on the Enable Content button, a user activates the macros in the workbook.
Otherwise, the macros in that workbook remain disabled.

Adding a Trusted Location
Upon installing Excel, several trusted locations are created automatically. As shown in Figure
22, the most prominent of these are the XLSTART folders and template folders.

2 In versions of Excel prior to 2007, such restrictions were not in place. For example, macros could be stored in
“normal” workbooks with .xls file extensions in Excel 2003.

Figure 22 - Trusted Locations in Excel 2013

To add a new trusted location, click the Add new location…button shown in Figure 22 to open
the Microsoft Office Trusted Location dialog box pictured in Figure 23. Enter the path for the
new trusted location, indicate whether the trusted location also includes subfolders of that path,
add an optional description, and click OK to complete the process. Upon doing so, Excel will
explicitly trust all workbooks stored in the newly created trusted location, including those
workbooks containing macros.

Figure 23 - Microsoft Office Trusted Location Dialog Box

E X C E L M A C R O S D E M Y S T I F I E D

28

Managing Macro Security in Workbooks not Stored in a
Trusted Location
If a workbook is not stored in a trusted location, users can still manage the security of macros
within that workbook by changing the Macro Settings options in the Trust Center.

Figure 24 - Macro Settings in the Trust Center

As shown in Figure 24, the Trust Center contains four levels of Macro Settings:

1. Disable all macros without notification,
2. Disable all macros with notification,
3. Disable all macros except digitally signed macros, and
4. Enable all macros (not recommended; potentially dangerous code can run).

The default for Macro Settings in the Trust Center is Disable all macros with notification.
That setting requires a user to consciously enable macros in a workbook that is not stored in a
trusted location, as shown previously in Figure 21.

If a user chose the first option – Disable all macros without notification – then when that user
opened a workbook not stored in a trusted location, all macros would be disabled, and there
would be no notification to the user similar to that displayed in Figure 21.

Choosing Disable all macros except digitally signed macros causes Excel to disable all
macros from workbooks in non-trusted locations, unless the workbook was previously digitally
signed by the publisher, and the publisher is recognized as a trusted publisher. For all practical
purposes, this level of security is the same as the default setting of disable all macros with
notification, in that if the macro is signed, but the publisher is not recognized as a trusted
publisher, then the user is notified to that effect, and the user can choose to add the publisher to
the list of trusted publishers.

The fourth and final option is to Enable all macros (not recommended; potentially
dangerous code can run). As the name implies, this is a dangerous choice, since macros are
able to run without being subjected to the security regime.

Summary
In this chapter, we reviewed several of the fundamentals associated with macros. The principles
discussed apply to all macros – whether recorded by the Macro Recorder or entered directly into
the Visual Basic Editor. Because of completing this chapter, participants know that some macro
functionality is accessible from the View tab of the Ribbon; however, activating the Developer
tab of the Ribbon is necessary to get to more advanced functionality. Participants also gained
knowledge about the rules associated with naming macros and how to assign keyboard shortcut
keys to macros, including the risks associated with keyboard shortcuts. Additionally, the
importance of choosing the proper storage location – including the Personal Macro Workbook
– for macros was reviewed, along with how to delete macros. Finally, the all-important topic of
managing macro security – including trusted locations and trusted publishers – was
introduced in order to minimize the risk potentially associated with macros.

With the knowledge gained in the first two chapters of this course, we are now ready to begin
doing more with the Macro Recorder, including learning additional types of macros that can be
recorded using this tool and its limitations.

Working with the Macro Recorder

Understanding what the Macro Recorder Does
As its name implies and as we learned in Chapter One, once activated, the Macro Recorder
simply records all of a user’s keystrokes until such time as the user turns off the Macro Recorder.
To create an analogy, think of the Macro Recorder as a tape or digital voice recorder – you turn
it on, speak into it, and turn it off, and when you want to play back your recording, you simply
press “Play.” The Macro Recorder works much the same way – you turn it on, execute your
keystrokes, and turn it off. When you are ready to play back those same keystrokes in the exact
same sequence, you press “Play” to execute the macro.
The hidden step with the Macro Recorder, however, is that not only does it act like a tape or
digital voice recorder, it also acts like a translator, converting your keystrokes into VBA code.
To illustrate, consider the VBA code shown in Figure 25; this macro was recorded with the
Macro Recorder and, as shown in the figure, contains fifty-five lines of code. However, in
addition to the keystrokes required to type in “CONFIDENTIAL Not for Disclosure Outside
K2 Enterprises,” recording the macro required only four keystrokes/mouse clicks; the Macro
Recorder automatically generated the remaining lines of VBA code.

E X C E L M A C R O S D E M Y S T I F I E D

30

Figure 25 - Example of a Macro to Create a Print Footer

Issues Associated with Using the Macro Recorder
If the Macro Recorder is good enough to generate fifty-five lines of code from only four
keystrokes/mouse clicks, then why is it necessary to learn anything at all about VBA? Why
can’t we just use the Macro Recorder as our one and only macro tool? The answer is simple –
the Macro Recorder has some fairly significant shortcomings that prevent it from being the only
tool in your macro toolbox. Among these are the following four items.

1. The Macro Recorder sometimes generates far more code than what is actually necessary

for the issue at hand.

2. The Macro Recorder, by default, always uses absolute referencing when recording
keystrokes.

3. The Macro Recorder cannot record macros that require interactive user input, such as a

macro that pauses and waits on a user to enter a variable.

4. The Macro Recorder cannot record macros that involve branching or looping logic.

Each of these issues is discussed below.

Generating Superfluous Code
As shown in Figure 25, the Macro Recorder is capable of generating a large volume of code
from only a few keystrokes. While this does not always produce negative consequences, it does
mean that the macro has to execute more lines of code and, as such, might run a bit slower than
if the extraneous code did not exist. Further, it makes copying some or all of the macro and
pasting it to another macro a bit more challenging. Thus, users frequently find it advantageous
to pare down the code generated by the macro recorder, reducing it only to the specific lines
required to perform the intended task. While a discussion of editing VBA code is reserved for
Chapter Four, Figure 26 presents an edited and condensed version of the macro shown in Figure
25. In this case, however, only the lines of code that are actually necessary to insert the print
footer into a worksheet remain with the macro. All other lines of extraneous code were deleted.

Figure 26 - Modified and Streamlined Macro to Create a Print Footer

E X C E L M A C R O S D E M Y S T I F I E D

32

Using Absolute versus Relative Referencing
The Macro Recorder, by default, records with absolute referencing enabled. We learned in
Chapter Two the differences between how macros operate when absolute referencing is enabled
and when relative referencing is enabled. If the Macro Recorder is used to record a macro and
if relative referencing is necessary in order for the macro to perform as intended, then turn on
relative referencing prior to turning on the Macro Recorder. For instance, suppose you needed
a macro to automatically insert a loan payment calculator into your worksheet beginning in the
currently selected cell of the worksheet. Using absolute referencing, that normally would not
constitute an issue at all. Simply click in the desired cell, turn on the macro recorder, and record
keystrokes that resemble something similar to the outline shown in Figure 27. Of course, the
macro creates a PMT formula in cell F10 to calculate the payment when the appropriate
variables are entered.

Figure 27 - Macro Used to Calculate Loan Payments

The VBA code created by the Macro Recorder related to the example presented in Figure 27 is
shown in Figure 28. Notice the “hard” references to cells E8, E9, E10, F7, F8, F10, and F11,
indicating that the specified functions will always be performed on those specific cells.

Figure 28 - VBA Code for Payment Macro Based on Absolute Referencing

Now, let us record the same macro, with one small – but significant – difference. In this instance,
we will turn on relative referencing prior to turning on the Macro Recorder. The result is the
code pictured in Figure 29.

Figure 29 - VBA Code for Payment Macro Based on Relative Referencing

E X C E L M A C R O S D E M Y S T I F I E D

34

In this case, because relative referencing was activated before the Macro Recorder was turned
on, the macro does not contain “hard-coded” absolute references; instead, relative references
are used throughout the macro, as evidenced by the presence of the numerous
ActiveCell.FormulaR1C1 and ActiveCell.Offset(x,y) commands within the code.

Examples of Macros Recorded with the Macro Recorder
In addition to the macros created with the Macro Recorder previously in this course, following
are examples of additional macros many users might find helpful to record and save in their
Personal Macro Workbooks.

Center Across Selection
The CAS macro shown in Figure 32 is quite useful in that, when attached to the QAT or Ribbon
as described in the following section, it applies the center across selection format data using one
click of the mouse; otherwise, up to six mouse clicks are necessary to apply this format.

Figure 32 - Center Across Selection Macro Created with the Macro Recorder

Transpose
The Transpose macro shown in Figure 33 copies a range of data and performs a Paste Special,
Transpose on that range of data. Note that the range of data should be selected prior to executing
the macro, though the macro will execute the “copy” command. Also, note the use of relative
referencing in the macro.

Figure 33 - Transpose Macro Created with the Macro Recorder

NAME AND ADDRESS
The NameAndAddress macro shown in Figure 34 enters the company’s name and address
into the active worksheet beginning in the currently selected cell. Note the use of relative
addressing in this macro. Should you wish the data to always be entered into a specific cell, use
absolute addressing instead.

Figure 34 - Name and Address Macro Created with the Macro Recorder

E X C E L M A C R O S D E M Y S T I F I E D

36

QUARTERLY INCOME STATEMENT
The IncomeStatement macro shown in Figure 35 is used to create a five-column income
statement – one column for each quarter and a total column. A SUM formula is included in the
total column; this formula adds the data for each quarter for each row.

Figure 35 - Quarterly Income Statement Macro Created with the Macro Recorder

Name Format
The NameFormat macro shown in Figure 36 is another example of a macro where relative
referencing is required. This macro takes name, address, and city/state data entered in three
adjoining columns and rearranges that data so that it resides in three consecutive rows.

Figure 36 - Name Format Macro Created with the Macro Recorder

Providing Easy Access to Macros
Users may access all macros – whether recorded with the Macro Recorder or through the Visual
Basic Editor – through either the Developer or View tabs of the Ribbon. In addition, you can
create one-click shortcuts to macros on the Quick Access Toolbar (QAT) in Excel 2007, Excel
2010, and Excel 2013. Also, in Excel 2010 and Excel 2013, you can customize the Ribbon to
include buttons providing one-click access to macros. Both of those techniques are discussed
below.

Attaching Macros to the Quick Access Toolbar
Excel 2007 replaced the menu structure and toolbars of prior versions of Excel with a new user
interface known as the Fluent interface. Cornerstones of the Fluent interface include replacing
menus with the Ribbon and toolbars with the QAT. Both the Ribbon and QAT also exist in
Excel 2010 and Excel 2013

In both Excel 2007, Excel 2010, and Excel 2013 you can – and should – customize the QAT to
add quick and easy access to the functions with which you work most often. If there is a
particular macro that you use often, then you should probably add it to the QAT so that you can
access it as quickly as possible.

To add a macro to the QAT, click the drop-down arrow on the QAT and select More
Commands… as shown in Figure 37. This action opens the Quick Access Toolbar section of
the Excel Options window. On it, select Macros from the Choose commands from: drop-
down list as shown in Figure 38.

E X C E L M A C R O S D E M Y S T I F I E D

38

Figure 37 - Customizing the Quick Access Toolbar

Figure 38 - Selecting to Customize the Quick Access Toolbar with Macros

Next, select the macro you wish to add to the QAT and click Add>>. As shown in Figure 39,
this causes Excel to add the selected macro to the QAT. To run the macro from the QAT, simply
click it.

E X C E L M A C R O S D E M Y S T I F I E D

40

Figure 39 - Adding a Macro to the Quick Access Toolbar

Customizing the Ribbon with Shortcuts to Macros
In addition to customizing the QAT, Excel 2010 and Excel 2013 you can also customize the
Ribbon directly from within Excel. While customizing the Ribbon is possible for Excel 2007
users, it requires the use of third-party tools and is beyond the scope of this seminar.

To customize the Ribbon, return to Excel Options, shown in Figure 38, and select Customize
Ribbon. Here you may add macros to existing tabs and groups on the Ribbon, or you may create
new tabs and groups. In this example, we will add a new tab to the Ribbon entitled Macros and
add a macro to that tab. To add a new tab to the Ribbon, click New Tab near the bottom of the
window as shown in Figure 40. Select the newly added tab, click Rename, and assign a more
descriptive name, such as Macros. Repeat this process to rename the Group that Excel
automatically added when the new tab was created.

Figure 40 - Adding a New Tab to the Ribbon

To begin adding Macros, select the Group to which the macros will be added. Then, select
Macros from the Choose commands from: drop-down list. Finally, select the macro you wish
to add and click Add>> as shown in Figure 41. Repeat this process for each macro you wish
to add to the Ribbon.

Figure 41 - Adding a Macro to the Ribbon in Excel 2013

E X C E L M A C R O S D E M Y S T I F I E D

42

Summary
The Macro Recorder is a valuable tool for novice and advanced Excel users alike. The Macro
Recorder serves as a “translator,” capturing and converting keystrokes into VB code that users
save as macros. However, the Macro Recorder is far from a perfect tool. For instance, it
generates superfluous code that we often do not need for the task at hand. By default, it records
with absolute referencing enabled and when we require relative referencing, we must remember
to enable it. Further, the Macro Recorder cannot record interactive macros, nor can it record
macros with branching logic. Yet, despite these limitations, the Macro Recorder is useful in
recording relatively simple macros, such as one that applies Center Across Selection formatting
with one click of the mouse. Additionally, we can use the Macro Recorder to record code that
we can harvest and use in other macros. For these reasons, all Excel users who might find the
need to work with macros should understand the usefulness of the Macro Recorder.

	Creating your First Macro in Less than Two Minutes
	Case Study in Recording Macros
	Macro Recorder Postscript

	Summary

	Understanding Macro Fundamentals
	What is a Macro?
	Accessing Macro Functionality
	Naming Macros
	Shortcut Keys
	Storing and Deleting Macros
	Absolute vs. Relative Cell References in Macros
	Macro Security
	Why Managing Macro Security is Necessary
	Default Macro Security Settings
	Adding a Trusted Location
	Managing Macro Security in Workbooks not Stored in a Trusted Location
	1. Disable all macros without notification,

	Summary

	Working with the Macro Recorder
	Understanding what the Macro Recorder Does
	Issues Associated with Using the Macro Recorder
	Generating Superfluous Code
	Using Absolute versus Relative Referencing

	Examples of Macros Recorded with the Macro Recorder
	Center Across Selection
	Transpose
	Name Format

	Providing Easy Access to Macros
	Attaching Macros to the Quick Access Toolbar
	Customizing the Ribbon with Shortcuts to Macros

	Summary

