

Harness the Power of

Array Formulas

Introduction
Array formulas, which work on arrays of data rather than individual cells or ranges, allow users to make
calculations that would otherwise be impossible with ordinary formulas. They can perform multiple
discrete calculations in a single cell or return results to multiple cells. For example, an array formula can
be used to round off totals or subtotals, a feat that is impossible to accomplish with an ordinary formula.
Don't miss this opportunity to harness the power of array formulas to improve your analytical abilities in
Excel.

Learning Objectives
Upon completing this course, participants should be able to:

• Explain array formulas and how they differ from ordinary formulas

• Identify an array formula from the Formula Bar

• Compose array formulas from the keyboard

• Describe common accounting situations where array formulas would be useful

Array Formula Basics
An array is a collection or range of two or more items. An array formula is a formula that acts on an array,
a range of cells, instead of individual cells, or a formula that delivers results to more than one cell. In a
nutshell, array formulas can perform multiple discrete calculations in single cell and return the results to
a single cell or return the results to multiple cells. Note that the results of an array formula can be
imbedded within other formulas. Since array formulas work on a group of cells in a single operation, array
formulas can perform calculations that are not possible with conventional formulas.

Excel has three types of arrays:

• A reference array is an area of a worksheet that contains more than one cell. It can be an ordinary
cell range, a worksheet reference, or a defined name.

• A result array is an array of items created by an array operation. For example, the LINEST function
can return an array of statistics than defines the results of a linear regression model.

• An array constant is an array of hard-coded values (constants). An array constant can be entered
directly into a formula or can be saved and referenced as a defined name.

Array formulas can be created using ordinary functions that take individual cells as their values. This type
of array formula must be entered using CTRL + SHIFT + ENTER. Excel also includes functions that operate
on arrays natively, such as SUMPRODUCT, AGGREGATE, LOOKUP, INDEX and SUMIF(S), COUNTIF(S), and
AVERAGEIF(S). These functions produce array formulas without entering CTRL + SHIFT + ENTER. Another
set of functions produce result arrays. Among them are TRANSPOSE, TREND, FREQUENCY, LINEST, AND
LOGEST.

Creating Simple Array Formulas
In this first example, three methods – conventional analysis using a helper column, an array formula using
the SUM function, and an array formula using SUMPRODUCT – will be used to calculate the total wages
paid to a project team for the week, as shown in Figure 1.

Figure 1 – Team Timesheet

1. In column D, create individual formulas to calculate the wages for each team member. Copy the
formula down and then sum the results in cell D7.

2. Build an ordinary array formula. Enter =SUM(B2:B5*C2:C5) in cell D9. Make sure to press CTRL +
SHIFT + ENTER to enter the formula. Otherwise, the formula will evaluate to #VALUE!. Note the
braces { } surrounding the formula in the formula bar.

3. Use the SUMPRODUCT function to build the formula. Enter =SUMPRODUCT(B2:B5,C2:C5) into
cell D10 and press ENTER. CTRL + SHIFT + ENTER is not needed to enter the formula, nor do braces
{ } surround the formula in the formula bar. The SUMPRODUCT function produces an array
formula without all of the complexities of an ordinary array formula. It can handle up to 255
arrays of data.

Figure 2 – Conventional vs Array Formulas

Note that each of the three methods returned the same result, but the array formulas used a single cell
to make the calculation. In the simple context presented, the most commonly used method with a helper
column works as well as the array formulas, but in situations involving thousands of transactions,
calculating the extended price or cost of goods just to calculate total revenue or total cost of goods sold
would be cumbersome and time consuming. In those situations, a single cell array formula would be a
better alternative. Further, using SUMPRODUCT in situations like these is a better solution because it

calculates faster and is easier for average Excel users to understand than ordinary array formulas entered
using CTRL + SHIFT + ENTER.

Before leaving this example, let's use an advanced technique to examine or troubleshoot array formulas.
Position the cursor in cell D9, the cell containing the ordinary array formula. Press F2 to edit the formula
and then click number 1 in the Screen Tip that appears to select the array reference. Press F9 to see the
underlying array, as shown in Figure 3. Do not press Enter without first pressing CTRL + Z to undo the
change. Otherwise, the cell references will be replaced with the array constant so that the formula will no
longer calculate by reference to the values in the cells, but by reference to the values inside the SUM
function, thereby breaking the formula envisaged.

Figure 3 – Troubleshooting an Array Formula

Similarly, the formula built using SUMPRODUCT can be examined. Note that the individual items of the
arrays can be examined rather than the results of the array calculations displayed in the ordinary array
formula.

 Rounding Off in a Total
This example uses an array formula to round off in a total. Many accounting professionals have been faced
with the need to sum a large number of amounts that result from floating point calculations. The amounts
may be the result of formulas or may be imbedded in data imported from other systems. A problem arises
when the amounts are not rounded off because Excel uses the underlying values rather than the displayed
values in calculating formulas, including summary totals. Conventional practice requires the use of the
ROUND function to round off all of the calculated amounts prior to summing their values, but that solution
is cumbersome and time-consuming when a large number of values are present. A better alternative
would be to build a formula that can round and sum the amounts in a single calculation. A simple array
formula like the one displayed below can perform this task quickly and easily.

{=SUM(ROUND(E5:E8,2))}

F9

Note the braces that surround the array formula. The braces are not typed in but are added by Excel when
an array formula is entered. To enter an ordinary array formula, type in the formula and then press CTRL
+ SHIFT + ENTER.

Figure 4 - Using an Array Formula to Round and Sum Data in a Total

Again, let's use the technique discussed earlier to examine the array formula. Position the cursor in cell
E10 and press F2. Then, click inside the ROUND function, click number in the Screen Tip, and press F9 to
see the unrounded values. Press CTRL + Z to undo the changes, and then click inside the SUM function but
before the ROUND function, click number 1 in the Screen Tip, and press F9 to see the rounded array
values. This examination helps us understand just how the array formula is making the calculation. It's not
rounding the sum, it's summing the rounds!

Making Calculations Based on Conditions
A more sophisticated example demonstrates how array formulas can be used to summarize data based
on conditions, in this case expenses by job and by account. Three methods for making the calculation will
be demonstrated – an array formula using the SUM function, and an array formula using SUMPRODUCT,
and an array formula using SUMIFS.

1. Build an array formula using SUM. Enter =SUM((D4:D7=$B14)*($E$4:$E$7=C$13)*(F4:F7))
in cell C14. Note the mixed reference addressing used for cells containing the conditions so that the
formula can be copied down and across. Make sure to press CTRL + SHIFT + ENTER to enter the
formula. Otherwise, the formula will evaluate to #VALUE!. Note the braces { } surrounding the formula
in the formula bar.

Figure 5 displays the expense list and the array formula that summarizes the expenses by job and by
account. Examine the formula's operation by using the F9 trick presented earlier.

The formula first tests to see if each Account in the range D4:D7 is equal to 8000 and then tests to see if
each Job in the range E4:E7 is equal to 701. If the result of a test is False, the formula returns 0. If the
result is True, the formula returns 1. The results of each test are multiplied together and then multiplied
by the requisite amount from the range F4:F7 before being summed by the formula.

There is a single detail expense entry recorded for Account 8000 and Job 701, so the formula in cell C14
evaluates to $234.00. Note that when testing multiple criteria, the multiplication operator (*) represents
an AND condition, and the addition operator (+) represents an OR condition.

Figure 5 - Simplified Expense Report Using Array Formula

2. Use the SUMPRODUCT function to build the "array" formula. Position the cursor in cell C14, type in
=SUMPRODUCT(--(D4:D7=$B14),--($E$4:$E$7=C$13),F4:F7) and press ENTER. CTRL + SHIFT
+ ENTER is not needed to enter the formula, nor do braces { } surround the formula in the formula
bar.

Use the F9 trick to examine the formula. The conditional tests add an additional layer of complexity to the
formula requiring double negatives (--) before each conditional array. Note that the first array evaluates
to TRUE;FALSE;FALSE;TRUE. In computing the product of the three arrays, SUMPRODUCT uses the text
labels resulting from the conditional tests. In formulas, labels evaluate as zero, so a formula without the
double negatives (--) in front of the conditional arrays will not calculate correctly. To force the conditional
arrays to evaluate as 1;0;0;1, simply perform an arithmetic operation on the result array. Putting a minus
sign in front of an array is the same as multiplying the array by -1, but that would make the tests evaluating
to TRUE equal to -1. To overcome this limitation, place two minus signs (double negatives) in front of the
array to convert them to positive numbers (1), which will then add and multiply correctly.

3. Use the SUMIFS function to build the "array" formula. Position the cursor in cell C14, type in
=SUMIFS(F4:F7,D4:D7,$B14,$E$4:$E$7,C$13) and press ENTER. CTRL + SHIFT + ENTER is not
needed to enter the formula, nor do braces { } surround the formula in the formula bar.

Use the F9 trick to examine the formula. The conditional tests do not add any additional complexity to the
formula because the function is designed to accommodate the conditional tests. Given the three formulas
demonstrated, SUMIFS is clearly the best choice for making these types of conditional array calculations.
Similarly, COUNTIFS and AVERAGEIFS can be used to perform conditional array calculations.

Conditional Calculations other than SUM, COUNT, and AVERAGE
Excel's functions for conditional sums, counts, and averages fit the bill in many, but not all circumstances.
If a user wants to identify the largest, smallest, or top three observations based on specified conditions,
Excel's built in conditional array functions can't provide a solution. Under those circumstances, users must
create their own array formulas to make the calculations.

In these examples, two formulas will be constructed – one to calculate the minimum sales by product by
quarter using the MIN and IF functions, and one to calculate the maximum sales by product by quarter
using the MAX and IF functions.

1. Build an array formula using MIN and IF. In cell B7 enter the following formula:

=MIN(IF(Sales!F2:F881=A7,IF(Sales!C2:C881=E5,Sales!G2:G881)))

Make sure to press CTRL + SHIFT + ENTER to enter the formula. Otherwise, the formula will evaluate
to 0. Note the braces { } surrounding the formula in the formula bar. The formula finds the minimum
sales value that meets two conditions – whether the product name in the data record is equal to the
product name on the report row and whether the quarter in the data record is equal to the reporting
quarter using the IF function. Note that the value if false argument of the IF function is not specified
for either test. A portion of the report and the formula is displayed in Figure 6.

Figure 6 – Array Formulas to Calculate the Minimum and Maximum Values

2. Similar to the formula above, build an array formula using MAX and IF. In cell C7 enter the following
formula:

=MAX(IF(Sales!F2:F881=A7,IF(Sales!C2:C881=E5,Sales!G2:G881)))

Make sure to press CTRL + SHIFT + ENTER to enter the formula. Otherwise, the formula will evaluate
to 0. Note the braces { } surrounding the formula in the formula bar. The formula finds the minimum
sales value that meets two conditions – whether the product name in the data record is equal to the
product name on the report row and whether the quarter in the data record is equal to the reporting
quarter using the IF function. Note that the value if false argument of the IF function is not specified
for either test. The formula is also displayed in Figure 6.

Extracting Data from a Range or Table
Array formulas can be used to extract data from an Excel table or an ordinary table array. While VLOOKUP
can return a single value based on specified criteria, the function only returns the data from the first
record that matches the condition when multiple records match the criteria. Array formulas can be used
to extract all records that match one or more specified criteria.

In the first demonstration, an array formula will be used to extract multiple records that match a single
criterion. The task is to extract a list of employees assigned to specified operating groups. Further, this
example looks up data in column 2 of a table array and returns the data from column 1 in the same array.
Have you ever tried that with VLOOKUP?

1. First, create a simple formula using COUNTIFS in cell F2 to count the number of instances in the data
where the selected operating group appears. This will serve as the k argument in the AGGREGATE
function that identifies what rows to extract.

2. Build the following array formula in cell E5 and then copy it down to cell E46:

=IF(ROWS(D$5:D5)>$F$2,"",INDEX(EMP[Employee],AGGREGATE(15,6,

(ROW(EMP[Employee])-ROW(A2)+1)/(EMP[Group]=E2),ROWS(D$5:D5))))

Press ENTER to enter the formula. The formula identifies the rows in the employee table containing
the specified operating group and extracts the names of all employees assigned to that group. The
analysis and the necessary formulas are displayed in Figure 7.

Figure 7 – Using an Array Formula to Extract Data

In the next example, array formulas will be used to extract transactional summaries from an Excel table.
The data extracted must meet user-defined criteria. Similar to the previous demonstration, first create a
simple formula using COUNTIFS to count the number of instances in the data where the criteria are met.
Then build the following array formula in cell J14 and copy it down to cell J115:

=IF(ROWS(J$14:J14)>$K$6,"",INDEX(Sales[EOMonth],AGGREGATE(15,6,

(ROW(Sales[EOMonth])-ROW(A2)+1)/((Sales[Quarter]=K3)*

(Sales[Product Line]=L3)*(Sales[Region]=M3)*(Sales[Year]=J3)),ROWS(J$14:J14))))

Create similar array formulas for each of the desired columns to be extracted by changing the array
argument in the INDEX function to match the desired column. Copy the formulas down to row 115. As the
selection criteria are modified, the array formulas will extract the matching records. A portion of the
worksheet is shown in Figure 8.

Figure 8 – Extracting Data Matching Multiple Criteria

Array Formulas in Reporting
Array formulas can be used effectively in the financial reporting and analysis context. In the following
examples, three array formulas will be examined. One will use a conventional array formula to automate
a six-month rolling report. Another will use SUMIFs to produce a six-month summary report with user
interaction. The third will produce a ratio analysis on an exported trial balance.

Accountants often create rolling reports where a new data column is added and a prior data column is
removed. Often, the formulas need to be recreated and copied down to complete the analysis. In this
example, we will create a rolling report that allows a professional to copy in new data, hide the unwanted
data, and have the analysis calculate properly without modifying any of the formulas.

In cell J9 build the array formula: =SUM((B8:I8>EOMONTH(MAX(B8:I8),-6))*(B9:I9)). Press CTRL
+ SHIFT + ENTER to enter the formula. For the formula to operate correctly, the column headings in the

report must be dates rather than labels. To add data to the report, simply insert a new column I, copy in
the new data, and hide the oldest month. Nothing else is required. The formula automatically calculates
the report from the most recent six months without modification. Even the date in the report heading
updates to reflect the latest data column. The report and formula are shown in Figure 9.

Figure 9 – Using an Array Formula to Auto-Calculate a Rolling Report

The next reporting example produces a rolling six-month exception report from data stored in an Excel
table. The table could consist of imported data or could be connected to an external data source, such as
an accounting solution. An ODBC connection to an external data source would facilitate updating the table
and associated reports with a single click. The formulas use the SUMIFS function to make the calculations.
Conditional formatting is applied to the report to highlight exceptional values and end-user interaction is
accomplished with data validation. The completed report is shown in Figure 10.

Similar to the previous example, the column headings in the report must be dates rather than text labels.
The column headings are tied by formula to the date selected by the end user in cell H4. The formula in
the field of the report is shown below. It need not be entered using CTRL + SHIFT + ENTER because SUMIFS
supports array calculations natively.

=SUMIFS(ProductSales[Amount],ProductSales[EOM],B$5,ProductSales[Product], $A6)

Figure 10 – Exception Report Created Using SUMIFS

The last reporting example automates the preparation of a financial ratio analysis from an exported
QuickBooks trial balance. The ratio components (quick assets, current assets, current liabilities, etc.) are
calculated using array formulas and then the financial ratios are calculated from the ratio components, as
shown in Figure 11. The formulas are built to function and calculate correctly even if additional accounts
have been added, although the newly created accounts must fall within identified boundaries for
particular account types. Note that all accounts must have an account number and the account numbers
must be exported to Excel.

Figure 11 – Using Array Formulas to Calculate Ratio Components

Functions that Return Result Arrays
Excel includes a set of functions that produce result arrays. In other words, users can enter a single formula
and have the formula return results to multiple cells. Among them are TRANSPOSE, TREND, FREQUENCY,
LINEST, AND LOGEST. Two examples of result arrays will be demonstrated, the first of which is the
calculation of linear regression components, useful in the process of forecasting revenues and expenses.

Regression analysis is a statistical method used to estimate and understand relationships between a
dependent variable and one or more independent variables. Linear regression models the relationship
between two or more variables by fitting a linear equation to observed data. In regression analysis, one
or more independent variables are used to predict a single dependent variable. For example, a sales
executive may want to investigate the effect of advertising expenditures on sales revenue. The
relationship may be explained by the linear regression equation:

Υ = α + βx

where Y is the dependent variable (sales revenue)

 x is the independent variable (advertising expenses)

 α is the intercept (the value of Y when x = 0), and

 β is the slope of the line.

The strength of the association between the independent and dependent variables is quantified by their
correlation coefficient. The correlation coefficient always takes a value between minus one and one, with
one or minus one indicating perfect correlation (with all points along a straight line). A positive correlation
indicates a positive association between the variables (where increasing values in one variable correspond
to increasing values in the other variable), while a negative correlation indicates a negative association
between the variables (where increasing values in one variable correspond to decreasing values in the
other variable). A correlation value of zero indicates that there is no association between the variables.

The square of the correlation coefficient, R², represents the percentage of variation in the dependent
variable that is explained by variation in the independent variable. If a correlation of 0.80 is observed
between the variables (for example, sales revenue and advertising expense), then a linear regression
model will account for 64% (0.802) of the variability in the data.

The major conceptual limitation of regression analysis is that one can ascertain relationships but can never
be sure about the underlying causal mechanism. For example, a strong positive relationship may exist
between the number of overtime hours worked by production personnel and the quantity of goods
produced, but a regression analysis cannot support the conclusion that the quantity of goods produced
actually caused the overtime. Other factors, such as machinery breakdowns or production line
inefficiencies, may have caused it. While regression analysis can quantify the relationship between
overtime hours worked and quantity of goods produced, it cannot explain the cause of the relationship.

Excel contains a number of tools that are useful in conducting regression analysis. The regression analysis
tool in the Analysis ToolPak add-in allows estimation of a single dependent variable based on up to sixteen
independent variables. Regression analysis is not the only tool available in the ToolPak. Tools are also
available to compute descriptive statistics, calculate moving averages and ANOVAs, generate random
numbers, and determine ranks and percentiles, etc. To conduct regression analysis using the ToolPak
requires multiple discrete steps. A better way for most business professionals to do regression analysis is
with formulas because the results can be referenced easily with other formulas and because a change in
the data causes the formulas to update immediately.

LINEST can be used to produce an array formula to calculate the slope and intercept of a linear regression
without using the Analysis ToolPak. It also can be used to generate descriptive statistics regarding the
linear regression, including R-Square. As shown in Figure 14, LINEST calculates the slope and intercept
based on the input of the dependent and independent variables in an array formula. Prior to entering the
formula, select the range E2:G6 to produce the output displayed. To modify the LINEST formula so that it
returns descriptive statistics, and then enter the array formula: =LINEST(C2:C31,A2:B31,TRUE,TRUE).
Press CTRL + SHIFT + ENTER to enter the formula. The results with a legend to interpret the results are
displayed in Figure 12.

Figure 12
Using LINEST to Calculate Linear Regression Components

In our last example, the TREND function will be used to forecast sales revenue. TREND generates values
along a linear trendline and can be used to predict multiple future dependent values based on the
relationship between existing dependent and independent variables. Note that TREND formulas can
produce result arrays, but must be entered using CTRL + SHIFT + ENTER. Figure 13, shows a TREND formula
being used to forecast sales for two additional months based on the actual advertising expenses and
monthly sales of thirty prior months.

Figure 13
Using a Trend Array to Forecast Sales Revenues

Using Array Constants
An array constant is an array of hard-coded values. It can be entered directly into a formula or can be
saved and referenced as a defined name. In this example, the US corporate income tax rate table will
be stored as a defined name. The defined name will refer to the array constant that makes up the
table.

To create the defined name, enter a simple formula that references the tax table. Then press F9 to
convert the cell references into an array. Copy the array to the clipboard with CTRL + C. Open the
Name Manager on the Formulas tab and click New. Name the defined name TaxTable and paste the
array into the Refers to: box and press OK. Note that column items are separated by columns and
rows are separated by semi-colons.

Once the defined name is created, the array constant can be used just as any other table array in a
VLOOKUP function to calculate estimated corporate taxes. Save the constant in your tax worksheet
templates or your default Excel template so that it will always be available. The worksheet used to
create the array id shown in Figure 14.

Figure 14 – Storing an Array Constant as a Defined Name

	Introduction
	Learning Objectives
	Array Formula Basics
	Creating Simple Array Formulas
	Rounding Off in a Total
	Making Calculations Based on Conditions
	Conditional Calculations other than SUM, COUNT, and AVERAGE
	Extracting Data from a Range or Table
	Array Formulas in Reporting
	Functions that Return Result Arrays
	Using Array Constants

